## BEFORE STARTING, TYPE YOUR NAME INTO THE FIELD "author" IN THE HEADER OF THE MARKDOWN DOCUMENT AND REMOVE THIS COMMENT ##
Download the datasets for this class:
You can download this whole script as ComputerAssignment_03.Rmd
file to save on your computer and open in RStudio instead of copying & pasting from this webpage:
For those who prefer to work with RCloud, a project with the same materials can be accessed using the following link:
Load Libraries:
library(dplyr) # for manipulating data
library(ggplot2) # for making graphs
library(knitr) # for nicer table formatting
library(summarytools) # for frequency distribution tables
Set your working directory, where the folder “Datasets” is located:
setwd(".") # for example: setwd("C:/Users/George/Dropbox/GSU/4041_Spring2020/R")
We are going to work with a new data set - a random sample of 1,000 federal personnel records for March 1994. These are not the responses to questionnaires as the previous data set was. Instead, they include the sort of information the government keeps in its personnel files: grade, salary, occupation, supervisory status, education, age, years of federal experience, sex, race, etc.
load("Datasets/OPM94.RData")
See a full listing of the variables by using names(dataset_name)
command:
1.1 First, lets work temporarily with American Indian females only (this step will subset the data set): race == "American Indian", male == "female"
opm94AIF <- opm94 %>% filter(race == "American Indian", male == "female") # subset data
opm94AIF %>% pander::pander(split.table = Inf) # print the resulting dataset nicely formatted
x | sal | grade | patco | major | age | male | vet | handvet | hand | yos | edyrs | promo | exit | supmgr | race | minority | grade4 | promo01 | supmgr01 | male01 | exit01 | vet01 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
256 | 49401 | 13 | Administrative | 42 | female | no | no | no | 14 | 13 | no | no | yes | American Indian | 1 | grades 13 to 16 | 0 | 1 | 0 | 0 | 0 | |
257 | 25672 | 5 | Technical | 31 | female | no | no | no | 6 | 13 | no | no | no | American Indian | 1 | grades 5 to 8 | 0 | 0 | 0 | 0 | 0 | |
258 | 23316 | 5 | Clerical | 46 | female | no | no | no | 16 | 12 | no | no | no | American Indian | 1 | grades 5 to 8 | 0 | 0 | 0 | 0 | 0 | |
259 | 45697 | 12 | Administrative | 53 | female | no | no | yes | 23 | 15 | no | no | yes | American Indian | 1 | grades 9 to 12 | 0 | 1 | 0 | 0 | 0 | |
260 | 45383 | 9 | Professional | 57 | female | no | no | no | 36 | 12 | no | no | no | American Indian | 1 | grades 9 to 12 | 0 | 0 | 0 | 0 | 0 | |
261 | 24576 | 5 | Technical | 62 | female | no | no | no | 38 | 10 | no | no | no | American Indian | 1 | grades 5 to 8 | 0 | 0 | 0 | 0 | 0 | |
262 | 20166 | 5 | Clerical | 33 | female | no | no | no | 6 | 13 | no | no | no | American Indian | 1 | grades 5 to 8 | 0 | 0 | 0 | 0 | 0 | |
263 | 42751 | 11 | Professional | PUBAF | 43 | female | no | no | no | 16 | 18 | no | no | no | American Indian | 1 | grades 9 to 12 | 0 | 0 | 0 | 0 | 0 |
264 | 24585 | 6 | Administrative | 53 | female | no | no | no | 18 | 15 | yes | no | no | American Indian | 1 | grades 5 to 8 | 1 | 0 | 0 | 0 | 0 | |
265 | 20796 | 5 | Technical | 32 | female | no | no | no | 10 | 13 | no | no | no | American Indian | 1 | grades 5 to 8 | 0 | 0 | 0 | 0 | 0 |
Let’s print out the individual values of the variables age, edyrs, grade, promo01, supmgr01
in the subset of the data, so that you could calculate statistics manually. We’ll also have the computer calculate the same statistics so that you could check your answers.
Individual values:
opm94AIF <- opm94AIF %>% select("age", "edyrs", "grade", "promo01", "supmgr01")
opm94AIF
## age edyrs grade promo01 supmgr01
## 1 42 13 13 0 1
## 2 31 13 5 0 0
## 3 46 12 5 0 0
## 4 53 15 12 0 1
## 5 57 12 9 0 0
## 6 62 10 5 0 0
## 7 33 13 5 0 0
## 8 43 18 11 0 0
## 9 53 15 6 1 0
## 10 32 13 5 0 0
Descriptive statistics for the same variables (three different commands/packages to choose from):
Using summary()
from base
package:
opm94AIF %>% select("age", "edyrs", "grade", "promo01", "supmgr01") %>% summary()
## age edyrs grade promo01 supmgr01
## Min. :31.00 Min. :10.00 Min. : 5.0 Min. :0.0 Min. :0.0
## 1st Qu.:35.25 1st Qu.:12.25 1st Qu.: 5.0 1st Qu.:0.0 1st Qu.:0.0
## Median :44.50 Median :13.00 Median : 5.5 Median :0.0 Median :0.0
## Mean :45.20 Mean :13.40 Mean : 7.6 Mean :0.1 Mean :0.2
## 3rd Qu.:53.00 3rd Qu.:14.50 3rd Qu.:10.5 3rd Qu.:0.0 3rd Qu.:0.0
## Max. :62.00 Max. :18.00 Max. :13.0 Max. :1.0 Max. :1.0
Using descr()
from descr
package:
descr::descr(opm94AIF)
##
## age
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 31.00 35.25 44.50 45.20 53.00 62.00
##
## edyrs
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 10.00 12.25 13.00 13.40 14.50 18.00
##
## grade
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 5.0 5.0 5.5 7.6 10.5 13.0
##
## promo01
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0 0.0 0.0 0.1 0.0 1.0
##
## supmgr01
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0 0.0 0.0 0.2 0.0 1.0
Using descr()
from summarytools
package:
summarytools::descr(opm94AIF)
## Descriptive Statistics
##
## age edyrs grade promo01 supmgr01
## ----------------- -------- -------- -------- --------- ----------
## Mean 45.20 13.40 7.60 0.10 0.20
## Std.Dev 10.97 2.17 3.31 0.32 0.42
## Min 31.00 10.00 5.00 0.00 0.00
## Q1 33.00 12.00 5.00 0.00 0.00
## Median 44.50 13.00 5.50 0.00 0.00
## Q3 53.00 15.00 11.00 0.00 0.00
## Max 62.00 18.00 13.00 1.00 1.00
## MAD 14.83 1.48 0.74 0.00 0.00
## IQR 17.75 2.25 5.50 0.00 0.00
## CV 0.24 0.16 0.44 3.16 2.11
## Skewness 0.02 0.59 0.53 2.28 1.28
## SE.Skewness 0.69 0.69 0.69 0.69 0.69
## Kurtosis -1.62 -0.29 -1.66 3.57 -0.37
## N.Valid 10.00 10.00 10.00 10.00 10.00
## Pct.Valid 100.00 100.00 100.00 100.00 100.00
QUESTION 1.1: Which of the three outputs for descriptive statistics do you find the most useful? Explain
Replace this note with your answer. Make sure it remains indented.
1.2 Using the raw data above, let’s compute (as appropriate) the mode, median, mean, range, variance, and standard deviation for variable age
(opm94AIF$age
: 42 31 46 53 57 62 33 43 53 32 ) listed for American Indian females:
age <- opm94AIF$age # save the values in a new variable with the name `age` for less typing
table(c(42, 31, 46, 53, 57, 62, 33, 43, 53, 32)) # figure out the mode from the table or use which.max()
##
## 31 32 33 42 43 46 53 57 62
## 1 1 1 1 1 1 2 1 1
which.max(table(c(42, 31, 46, 53, 57, 62, 33, 43, 53, 32)))
## 53
## 7
sort(c(42, 31, 46, 53, 57, 62, 33, 43, 53, 32)) # find the median from the ordered vector or use R function median()
## [1] 31 32 33 42 43 46 53 53 57 62
median(opm94AIF$age)
## [1] 44.5
(42+31+46+53+57+62+33+43+53+32)/10 # or
## [1] 45.2
sum(opm94AIF$age)/length(opm94AIF$age)
## [1] 45.2
mean(opm94AIF$age)
## [1] 45.2
sort(c(42, 31, 46, 53, 57, 62, 33, 43, 53, 32)) # or
## [1] 31 32 33 42 43 46 53 53 57 62
range(opm94AIF$age)
## [1] 31 62
age
## [1] 42 31 46 53 57 62 33 43 53 32
age - mean(age)
## [1] -3.2 -14.2 0.8 7.8 11.8 16.8 -12.2 -2.2 7.8 -13.2
(age - mean(age))^2
## [1] 10.24 201.64 0.64 60.84 139.24 282.24 148.84 4.84 60.84 174.24
sum((age - mean(age))^2)/(10-1)
## [1] 120.4
var(age)
## [1] 120.4
sqrt(sum((age - mean(age))^2)/(10-1) )
## [1] 10.97269
sd(age)
## [1] 10.97269
QUESTION 1.2: Do the manually calcualted results match the descriptive statistics in the tables above in section 1.1?
Replace this note with your answer. Make sure it remains indented.
QUESTION 1.3: Similarly, compute (as appropriate) the mode, median, mean, range, variance, and standard deviation for variables edyrs
and supmgr01
(opm94AIF$edyrs
: 13 13 12 15 12 10 13 18 15 13, opm94AIF$supmgr01
: 1 0 0 1 0 0 0 0 0 0 ) listed for American Indian females. Check your results against the output in 1.1.
# replace this note with your computations and comments
Let’s generate grouped data (frequency table) that you will use for calculating statistics (mode, median, mean) for variable edyrs
from the full dataset opm94
:
summarytools::freq(opm94$edyrs) # grouped data
## Frequencies
##
## Freq % Valid % Valid Cum. % Total % Total Cum.
## ----------- ------ --------- -------------- --------- --------------
## 10 12 1.20 1.20 1.20 1.20
## 12 330 33.00 34.20 33.00 34.20
## 13 101 10.10 44.30 10.10 44.30
## 14 98 9.80 54.10 9.80 54.10
## 15 39 3.90 58.00 3.90 58.00
## 16 290 29.00 87.00 29.00 87.00
## 18 112 11.20 98.20 11.20 98.20
## 20 18 1.80 100.00 1.80 100.00
## <NA> 0 0.00 100.00
## Total 1000 100.00 100.00 100.00 100.00
summary(opm94$edyrs) # summary statistics by R
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 10.00 12.00 14.00 14.37 16.00 20.00
Finding mode, median, mean for edyrs
using the grouped data:
Mode - the most frequent vaue, can be seen in the frequency table (=12)
Median - the value in the middle, can be seen in the frequency table from the % Valid Cum.
column (=14)
Mean: SUM(Xi*fi)/n:
(10*12 + 12*330 + 13*101 + 14*98 + 15*39 + 16*290 + 18*112 + 20*18)/1000
## [1] 14.366
QUESTION 2.1: Similarlly to the example above, find the mode, median, mean for variables yos
and supmgr01
using the grouped data:
# your work
QUESTION 3: Male01
and exit01
are dummy variables. (They only have two possible values, o and 1.) For each, compare its mean to the percentage of cases with the value 1. How are these two measures related?
Percentage of cases with the value 0 and 1 for male01
:
table(opm94$male01) %>% prop.table()*100
##
## 0 1
## 48.8 51.2
Mean value of male01
:
mean(opm94$male01)
## [1] 0.512
Your answer
QUESTION 4: Using the Frequencies output for the entire data set (and the grouped data formulas for intervals), calculate the mean grade, using GRADE4 instead of grade.Calculate means using the midpoint of each interval of grade4
freq(opm94$grade4)
## Frequencies
##
## Freq % Valid % Valid Cum. % Total % Total Cum.
## --------------------- ------ --------- -------------- --------- --------------
## grades 1 to 4 70 7.00 7.00 7.00 7.00
## grades 13 to 16 223 22.30 29.30 22.30 29.30
## grades 5 to 8 299 29.90 59.20 29.90 59.20
## grades 9 to 12 408 40.80 100.00 40.80 100.00
## <NA> 0 0.00 100.00
## Total 1000 100.00 100.00 100.00 100.00
Mean:
# your work
Let’s calculate mmeans of a variety of variables for black and white workers so that you can describe differences between the two groups of workers:
opm94$race %>% table()
## .
## American Indian Asian Black Hispanic White
## 17 31 175 49 728
opm94 %>% filter(race == "White") %>% select(sal) %>% summarise(mean_sal_white = mean(sal, na.rm = T))
## mean_sal_white
## 1 43294.39
opm94 %>% filter(race == "Black") %>% select(sal) %>% summarise(mean_sal_black = mean(sal, na.rm = T))
## mean_sal_black
## 1 32712.78
opm94 %>% filter(race == "White") %>% select(edyrs) %>% summarise(mean_edyrs_white = mean(edyrs, na.rm = T))
## mean_edyrs_white
## 1 14.57692
opm94 %>% filter(race == "Black") %>% select(edyrs) %>% summarise(mean_edyrs_black = mean(edyrs, na.rm = T))
## mean_edyrs_black
## 1 13.6
Or, alternatively, use the following commands:
opm94 %>% select(race, sal) %>% group_by(race) %>% summarise(mean_sal = mean(sal, na.rm = T))
## # A tibble: 5 x 2
## race mean_sal
## <fct> <dbl>
## 1 American Indian 32846.
## 2 Asian 38440.
## 3 Black 32713.
## 4 Hispanic 36500.
## 5 White 43294.
opm94 %>% select(race, edyrs) %>% group_by(race) %>% summarise(mean_edyrs = mean(edyrs, na.rm = T))
## # A tibble: 5 x 2
## race mean_edyrs
## <fct> <dbl>
## 1 American Indian 13.5
## 2 Asian 14.7
## 3 Black 13.6
## 4 Hispanic 14.1
## 5 White 14.6
#opm94 %>% select(race, grade) %>% group_by(race) %>% summarise(mean_grade = mean(grade, na.rm = T))
#opm94 %>% select(race, promo01) %>% group_by(race) %>% summarise(mean_promo01 = mean(promo01, na.rm = T))
#opm94 %>% select(race, supmgr01) %>% group_by(race) %>% summarise(mean_supmgr01 = mean(supmgr01, na.rm = T))
Question 5: Do whites receive higher rewards (e.g., salaries, grades, supervisory status, promotions) than minorities? Do differences in education and federal experience seem to be partly responsible for these patterns? Write a paragraph discussing differences between the groups (be specific about which groups you compare).
Your answer...
Knit the document into an html file and upload to RPubs or save as a pdf file and submit on iCollege.